

Report ID 2020-W19 -sot23

# PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/20/12148

# Analog, MEMS & Sensors (AMS)

New assembly site (subcontractor TSHT China) for General Purpose Analog products in SOT23 package



## WHAT:

Progressing on activities related to process modernization and quality improvement, ST is pleased to announce the introduction of TSHT/China as additional subcontractor for Assembly and Test & Finishing activities for some products assembled in our SOT23 package. Production is already running for general purpose analog products since 2017 on BCD6S and Bipolar technology.

| Please find more information related to material | change in the table here below |
|--------------------------------------------------|--------------------------------|
|--------------------------------------------------|--------------------------------|

| Material           | Current process                       | Modified process                      | Comment   |
|--------------------|---------------------------------------|---------------------------------------|-----------|
| Diffusion location | St Crolles (France) /<br>UMC (Taiwan) | St Crolles (France) /<br>UMC (Taiwan) | No change |
| Assembly location  | Carsem Malaysia                       | TSHT China                            |           |
| Molding compound   | Hitachi CEL 8240HF10                  | Hitachi CEL 1702HF9                   |           |
| Die attach         | Henkel QMI519                         | Henkel 8200T                          |           |
| Leadframe          | Copper                                | Copper                                |           |
| Plating            | NiPdAu                                | Matte Sn                              |           |
| Wire               | Gold 1mil                             | Copper Pd coated 1 mil                |           |

### WHY:

The purpose of the introduction of TSHT for both Assy and Test & Finishing activities for the here above listed commercial products is to further improve the rationalization of our manufacturing assets and provide a better support to our customers by enhancing the manufacturing process for higher volume production.

### HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests.

You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

### WHEN:

The new material set will be implemented in Q3/2020 in TSHT China.

## Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets.

There is -as well- no change in the packing process or in the standard delivery quantities. Shipments may start earlier with the customer's written agreement.



# **Reliability Qualification plan**

AMS Back-end qualification Sot23-5

Production second sourcing to TSHT

| Genera                     | l Information                                                                                                               | Loca            | ations                          |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|
| Product Line               | 3021, UI69, KR33                                                                                                            |                 | UMC Taiwan ,<br>ST Catania (It- |
| Product Description        | Single high speed comparator,<br>200 mA low quiescent<br>current very low noise LDO,<br>Very Low Drop VREG @<br>100mA 3.3 V | Wafer fab       | aly), ST Singa-<br>pore         |
| P/N                        | TS3021ILT, LDK120M-R,<br>D2981ABM33TR                                                                                       | Assembly plant  | TSHT China                      |
| Product Group              | AMS                                                                                                                         | Reliability Lab | ST Grenoble,<br>TSHT            |
| Product division           | General Purpose Analog &RF                                                                                                  |                 |                                 |
| Package                    | Sot23-5                                                                                                                     |                 |                                 |
| Silicon Process technology | HF5CMOS, BCD6S, Bipolar<br>(BI20II)                                                                                         |                 |                                 |
|                            |                                                                                                                             |                 |                                 |

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.



## **TABLE OF CONTENTS**

| 1 | APP  | LICABLE AND REFERENCE DOCUMENTS |    |
|---|------|---------------------------------|----|
| 2 | GLO  | SSARY                           |    |
| 3 | RELI | IABILITY EVALUATION OVERVIEW    |    |
|   | 3.1  | OBJECTIVES                      |    |
|   | 3.2  | CONCLUSION                      |    |
| 4 | DEV  | ICE CHARACTERISTICS             | 10 |
|   | 4.1  | DEVICE DESCRIPTION              |    |
|   | 4.2  | CONSTRUCTION NOTE               |    |
| 5 | TES  | TS PLAN SUMMARY                 |    |
|   | 5.1  | TEST VEHICLE                    |    |
|   | 5.2  | TEST PLAN SUMMARY               |    |
| 6 | ANN  | EXES                            |    |
|   | 6.1  | TESTS DESCRIPTION               |    |



# **<u>1</u>** APPLICABLE AND REFERENCE DOCUMENTS

| Document reference | Short description                                       |
|--------------------|---------------------------------------------------------|
| JESD47             | Stress-Test-Driven Qualification of Integrated Circuits |

## 2 GLOSSARY

| DUT | Device Under Test     |
|-----|-----------------------|
| РСВ | Printed Circuit Board |
| SS  | Sample Size           |
|     |                       |

# **<u>3 RELIABILITY EVALUATION OVERVIEW</u>**

## 3.1 **Objectives**

To qualify a new assembly site, TSHT China, for products in sot23-5Leads package for Analog products in HCMOS5/HF5CMOS technology based on existing qualification on BCD6S and Bipolar .

## 3.2 Conclusion

Qualification Plan requirements have to be fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.



# **<u>4</u> DEVICE CHARACTERISTICS**

## 4.1 **Device description**

#### ✤ TS30211LT

life, augmented

# TS3021, TS3021A

### Rail-to-rail 1.8 V high-speed comparator

Datasheet - production data



#### Features

- Propagation delay: 38 ns
- Low current consumption: 73 µA
- Rail-to-rail inputs
- Push-pull outputs
- Supply operation from 1.8 to 5 V
- Wide temperature range: -40 °C to 125 °C
- High ESD tolerance: 5 kV HBM, 300 V MM
- Latch-up immunity: 200 mA
- SMD packages
- Automotive qualification

#### Related products

- TS3022 for a dual comparator with similar performances
- TS3011 for a high-speed comparator

#### Applications

- Telecom
- Instrumentation
- Signal conditioning
- High-speed sampling systems
- Portable communication systems

#### Description

The TS3021 single comparator features highspeed response time with rail-to-rail inputs. With a supply voltage specified from 2 to 5 V, this comparator can operate over a wide temperature range: -40 °C to 125 °C.

The TS3021 comparator offers micropower consumption as low as a few tens of microamperes thus providing an excellent ratio of power consumption current versus response time.

The TS3021 includes push-pull outputs and is available in small packages (SOT23-5 and SC70-5).

 The LDK120 low drop voltage regulator provides 200 mA of maximum current from an input supply voltage in the range of 1.9 V to 5.5 V, with a typical dropout voltage of 100 mV. It is stabilized with a ceramic capacitor on the output.

The very low drop voltage, low quiescent current and low noise features make it suitable for low power batterypowered applications. An enable logic control function puts the LDK120 in shutdown mode allowing a total current consumption lower than 1 µA. The device also includes a short-circuit constant current limiting and thermal protection.

The LD2981 is a 100 mA fixed-output voltage regulator. The low-drop voltage and the ultra low quiescent current
make them suitable for low noise, low power applications and in battery powered systems.
The quiescent current in sleep mode is less than 1 µA when INHIBIT pin is pulled low. Shutdown logic control
function is available on pin n° 3 (TTL compatible). This means that when the device is used as local regulator, it is
possible to put a part of the board in standby, decreasing the total power consumption. The LD2981 is designed to
work with low ESR ceramic capacitor. Typical applications are in cellular phone, palmtop/laptop computer, personal
digital assistant (PDA), personal stereo, camcorder and camera.



# 4.2 Construction note

|                                     | P/N                      | P/N                      | P/N                      |
|-------------------------------------|--------------------------|--------------------------|--------------------------|
|                                     | TS30211LT                | LDK120M-R                | LD2981ABM33TR            |
| Wafer information                   |                          |                          |                          |
| Wafer fab manufacturing location    | UMC Taiwan               | ST Catania               | ST Singapore             |
| Technology                          | HF5CMOS                  | BCD6S                    | Bipolar                  |
| Die finishing back side             | RAW SILICON              | RAW SILICON              | LappedSILICON            |
| Die size (microns)                  | 720x820 um               | 782 x 736 um             | 1470 x 990 um            |
| Bond pad metallization layers       | AlSiCu                   | AlCu                     | AlSi                     |
| Passivation type                    | PSG + NITRIDE            | TEOS/SiN/Polyimide       | P-Vapox/Nitride/Po-      |
|                                     |                          |                          | lyimide(PIQ)             |
| Assembly information                |                          |                          |                          |
| Assembly site                       | TSHT                     | TSHT                     | TSHT                     |
| Package description                 | Sot23-5leads             | Sot23-5leads             | Sot23-5leads             |
| Molding compound                    | Hitachi CEL-1702HF9      | Hitachi CEL-1702HF9      | Hitachi CEL-1702HF9      |
| Frame material                      | Cu                       | Cu                       | Cu                       |
| Die attach process                  | Epoxy Glue               | Epoxy Glue               | Epoxy Glue               |
| Die attach material                 | Henkel 8200T             | Henkel 8200T             | Henkel 8200T             |
| Wire bonding process                | Thermosonic ball bonding | Thermosonic ball bonding | Thermosonic ball bonding |
| Wires bonding materials/diameters   | Cu 1 mil Pd Coated       | Cu 1 mil Pd Coated       | Cu 1 mil Pd Coated       |
| Lead finishing process              | electroplating           | electroplating           | electroplating           |
| Lead finishing/bump solder material | Matte Sn                 | Matte Sn                 | Matte Sn                 |



# 5 TESTS PLAN SUMMARY

#### Test vehicle 5.1

| Lo<br>t # | Process/ Packaga | Product Line | Comments |
|-----------|------------------|--------------|----------|
| 1         | HF5CMOS/Sot23-5  | 3021         |          |
| 2         | BCD6S/Sot23-5    | UI69         |          |
| 3         | Bipolar/Sot23-5  | KR33         |          |

# 5.2 **Test plan summary**

|       |    |                 |                                                                                             |          |         | Failure/SS                   |               |              |      |
|-------|----|-----------------|---------------------------------------------------------------------------------------------|----------|---------|------------------------------|---------------|--------------|------|
| Test  | PC | Std ref.        | Conditions                                                                                  | SS       | Steps   | Lot 1<br>3021                | Lot 2<br>UI69 | Lot3<br>KR33 | Note |
|       | -  | -               | -                                                                                           |          | -       | -                            |               |              |      |
| HTB/  |    | JESD22          |                                                                                             |          | 168 H   | 77                           | 0/77          | 0/77         |      |
| HTOL  | Ν  | A-108           | Ta = 125°C or 125°C, BIAS                                                                   |          | 1000 H  | 77                           | 0/77          | 0/77         |      |
|       |    |                 |                                                                                             |          | 4 CO XX |                              | 0.150         | 0.450        |      |
|       |    |                 |                                                                                             |          | 168 H   | 50                           | 0/50          | 0/50         |      |
| HTSL  | Ν  | JESD22          | $Ta = 150^{\circ}C$                                                                         |          | 500 H   | 50                           | 0/50          | 0/50         |      |
|       |    | A-103           |                                                                                             |          | 1000 H  | 50                           | 0/50          | 0/50         |      |
|       |    |                 | <u> </u>                                                                                    | <u> </u> |         |                              | -             |              |      |
| РС    |    | JESD22<br>A-113 | Drying 24 H @ 125°C<br>Store 168 H @ Ta=85°C Rh=85%<br>Over Reflow @ Tpeak=260°C 3<br>times |          | Final   | Below<br>sample +<br>22units | PASS          | PASS         |      |
| UHAST | Y  | JESD22<br>A-102 | 85%RH / Ta=130°C                                                                            |          | 96 H    | 77                           | 0/75          | 0/75         |      |
|       |    |                 |                                                                                             |          | 100 cy  | 77                           | 0/75          | 0/75         |      |
| TC    | Y  | JESD22          | T 5500 / 15000                                                                              |          | 200 cy  | 77                           | 0/75          | 0/75         |      |
| IC    | Ŷ  | A-104           | $Ta = -55^{\circ}C \text{ to } 150^{\circ}C$                                                |          | 500 cy  | 77                           | 0/75          | 0/75         |      |
|       |    |                 |                                                                                             |          | 168 H   | 77                           | 0/75          | 0/75         |      |
| THB   | Y  | JESD22          | Ta = 85°C, RH = 85%, BIAS                                                                   |          | 500 H   | 77                           | 0/75          | 0/75         |      |
|       |    | A-101           |                                                                                             |          | 1000 H  | 77                           | 0/75          | 0/75         |      |



# 6 ANNEXES

# 6.1 **Tests Description**

| Test name                                                                                                                                                                  | Description                                                                                                                                                              | Purpose                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Die Oriented                                                                                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| HTOL<br>High Temperature<br>Operating Life<br>HTB<br>High Temperature<br>Bias                                                                                              | The device is stressed in static or dynamic<br>configuration, approaching the operative<br>max. absolute ratings in terms of junction<br>temperature and bias condition. | To determine the effects of bias conditions<br>and temperature on solid state devices over<br>time. It simulates the devices' operating con-<br>dition in an accelerated way.<br>The typical failure modes are related to, sili-<br>con degradation, wire-bonds degradation, ox-<br>ide faults.                                                                  |
| HTRB<br>High Temperature<br>Reverse Bias                                                                                                                                   | The device is stressed in static configura-<br>tion, trying to satisfy as much as possible<br>the following conditions:<br>low power dissipation;                        | To determine the effects of bias conditions<br>and temperature on solid state devices over<br>time. It simulates the devices' operating con-<br>dition in an accelerated way.<br>To maximize the electrical field across either                                                                                                                                  |
| HTFB / HTGB<br>High Temperature<br>Forward (Gate)<br>Bias                                                                                                                  | max. supply voltage compatible with diffu-<br>sion process and internal circuitry limita-<br>tions;                                                                      | reverse-biased junctions or dielectric layers, in<br>order to investigate the failure modes linked to<br>mobile contamination, oxide ageing, layout<br>sensitivity to surface effects.                                                                                                                                                                           |
| HTSL<br>High Temperature<br>Storage Life                                                                                                                                   | The device is stored in unbiased condition at<br>the max. temperature allowed by the pack-<br>age materials, sometimes higher than the<br>max. operative temperature.    | To investigate the failure mechanisms acti-<br>vated by high temperature, typically wire-<br>bonds solder joint ageing, data retention<br>faults, metal stress-voiding.                                                                                                                                                                                          |
| ELFR<br>Early Life Failure<br>Rate                                                                                                                                         | The device is stressed in biased conditions at the max junction temperature.                                                                                             | To evaluate the defects inducing failure in early life.                                                                                                                                                                                                                                                                                                          |
| Package Oriented                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| <b>PC</b><br>Preconditioning The device is submitted to a typical temper-<br>ature profile used for surface mounting de-<br>vices, after a controlled moisture absorption. |                                                                                                                                                                          | As stand-alone test: to investigate the moisture<br>sensitivity level.<br>As preconditioning before other reliability<br>tests: to verify that the surface mounting stress<br>does not impact on the subsequent reliability<br>performance.<br>The typical failure modes are "pop corn" ef-<br>fect and delamination.                                            |
| AC<br>Auto Clave (Pres-<br>sure Pot)                                                                                                                                       | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.                                                                 | To investigate corrosion phenomena affecting<br>die or package materials, related to chemical<br>contamination and package hermeticity.                                                                                                                                                                                                                          |
| TCThe device is submitted to cycled tempera-<br>ture excursions, between a hot and a cold<br>chamber in air atmosphere.                                                    |                                                                                                                                                                          | To investigate failure modes related to the<br>thermo-mechanical stress induced by the dif-<br>ferent thermal expansion of the materials in-<br>teracting in the die-package system. Typical<br>failure modes are linked to metal displace-<br>ment, dielectric cracking, molding compound<br>delamination, wire-bonds failure, die-attach<br>layer degradation. |



Report ID 2020-W19 -sot23

| Test name                                                                       | Description                                                                                                       | Purpose                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>TF</b> / <b>IOL</b><br>Thermal Fatigue /<br>Intermittent Oper-<br>ating Life | The device is submitted to cycled tem-<br>perature excursions generated by power<br>cycles (ON/OFF) at T ambient. | To investigate failure modes related to the<br>thermo-mechanical stress induced by the<br>different thermal expansion of the materi-<br>als interacting in the die-package system.<br>Typical failure modes are linked to metal<br>displacement, dielectric cracking, molding<br>compound delamination, wire-bonds fail-<br>ure, die-attach layer degradation. |
| <b>THB</b><br>Temperature Humi-<br>Temperature Humi-                            |                                                                                                                   | To evaluate the package moisture resistance<br>with electrical field applied, both electrolytic<br>and galvanic corrosion are put in evidence.                                                                                                                                                                                                                 |
| Other                                                                           |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                |
| Electro Static Dis-<br>CBM: Charged Device Model                                |                                                                                                                   | To classify the device according to his suscep-<br>tibility to damage or degradation by exposure<br>to electrostatic discharge.                                                                                                                                                                                                                                |
|                                                                                 |                                                                                                                   | To verify the presence of bulk parasitic effect inducing latch-up.                                                                                                                                                                                                                                                                                             |